Application of K-Means Clustering on School Identification in the Distribution of Assistance Funds for DPRD Members
Case Study in North Padang Lawas DPRD
DOI:
https://doi.org/10.25008/bcsee.v3i2.1163Keywords:
Distribution DPRD School, Software RapidMiner, Clustering, K-Means Clustering, unsupervised learningAbstract
In this study, the k-means algorithm was used to group schools and categorize DPRD grants into very feasible, feasible, and impractical categories for better focus. Based on the results of computational analysis using the K-Means clustering algorithm using the Euclidean distance equation for the distribution of DPRD suction subsidies from 52 schools, 28 schools are in the very decent category and 11 schools are decent. In that category, 13 schools were found with fewer categories. executable category. RapidMiner Studio v.7.6 software can group schools based on the distribution needs of DPRD suction tools for more effective and efficient results.
Downloads
References
P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means clustering.,” in ICML, 1998, vol. 98, pp. 91–99.
K. P. Sinaga and M.-S. Yang, “Unsupervised K-means clustering algorithm,” IEEE access, vol. 8, pp. 80716–80727, 2020.
S. Na, L. Xumin, and G. Yong, “Research on k-means clustering algorithm: An improved k-means clustering algorithm,” in 2010 Third International Symposium on intelligent information technology and security informatics, 2010, pp. 63–67.
J. Xu and K. Lange, “Power k-means clustering,” in International conference on machine learning, 2019, pp. 6921–6931.
Y.-M. Cheung, “k?-Means: A new generalized k-means clustering algorithm,” Pattern Recognit. Lett., vol. 24, no. 15, pp. 2883–2893, 2003.
H. Zha, X. He, C. Ding, M. Gu, and H. Simon, “Spectral relaxation for k-means clustering,” Adv. Neural Inf. Process. Syst., vol. 14, 2001.
I. Bin Mohamad and D. Usman, “Standardization and its effects on K-means clustering algorithm,” Res. J. Appl. Sci. Eng. Technol., vol. 6, no. 17, pp. 3299–3303, 2013.
A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern Recognit., vol. 36, no. 2, pp. 451–461, 2003.
K. Alsabti, S. Ranka, and V. Singh, “An efficient k-means clustering algorithm,” 1997.
D. T. Pham, S. S. Dimov, and C. D. Nguyen, “Selection of K in K-means clustering,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 219, no. 1, pp. 103–119, 2005.
P. S. Bradley, K. P. Bennett, and A. Demiriz, “Constrained k-means clustering,” Microsoft Res. Redmond, vol. 20, no. 0, p. 0, 2000.
J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering algorithm,” J. R. Stat. Soc. Ser. c (applied Stat., vol. 28, no. 1, pp. 100–108, 1979.
J. Burkardt, “K-means clustering,” Virginia Tech, Adv. Res. Comput. Interdiscip. Cent. Appl. Math., 2009.
K. A. A. Nazeer and M. P. Sebastian, “Improving the Accuracy and Efficiency of the k-means Clustering Algorithm,” in Proceedings of the world congress on engineering, 2009, vol. 1, pp. 1–3.
L. Morissette and S. Chartier, “The k-means clustering technique: General considerations and implementation in Mathematica,” Tutor. Quant. Methods Psychol., vol. 9, no. 1, pp. 15–24, 2013.
D. Steinley, “K-means clustering: a half-century synthesis,” Br. J. Math. Stat. Psychol., vol. 59, no. 1, pp. 1–34, 2006.
T. M. Kodinariya and P. R. Makwana, “Review on determining number of Cluster in K-Means Clustering,” Int. J., vol. 1, no. 6, pp. 90–95, 2013.
T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 881–892, 2002.
K. Teknomo, “K-means clustering tutorial,” Medicine (Baltimore)., vol. 100, no. 4, p. 3, 2006.
K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, and others, “Constrained k-means clustering with background knowledge,” in Icml, 2001, vol. 1, pp. 577–584.
B. Harahap, “Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung),” Ready Star, vol. 2, no. 1, pp. 394–403, 2019.
B. Harahap and A. Rambe, “Implementasi K-Means Clustering Terhadap Mahasiswa yang Menerima Beasiswa Yayasan Pendidikan Battuta di Universitas Battuta Tahun 2020/2021 Studi Kasus Prodi Informatika,” Informatika, vol. 9, no. 3, pp. 90–97, 2021, doi: 10.36987/informatika.v9i3.2185.
“K-Means Analysis in Grouping Abilities of Battuta University Informatics Study Program Students”.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Eka Hayana Hasibuan, Aripin Rambe, Dinur Syahputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.