Simulation and Analysis of Distributed Generation Installation on a 20 kV Distribution System Using ETAP 19.0

Authors

  • Arnawan Hasibuan Department of Electrical Engineering, Faculty of Engineering, Universitas Malikussaleh, Lhokseumawe, Indonesia
  • Firwan Dani Department of Electrical Engineering, Faculty of Engineering, Universitas Malikussaleh, Lhokseumawe, Indonesia
  • Asran Department of Electrical Engineering, Faculty of Engineering, Universitas Malikussaleh, Lhokseumawe, Indonesia
  • I Made Ari Nrartha Department of Electrical Engineering, Universitas Mataram, Nusa Tenggara Barat, Indonesia

DOI:

https://doi.org/10.25008/bcsee.v3i1.1151

Keywords:

Distribution system, Distributed Generation, Wind Turbine, ETAP, Electrical Transient Analyzer Program

Abstract

Conventional power plants are generally designed on a large scale, centralized, and built far from the load center so that they require transmission and distribution networks to distribute electric power. The condition of the distribution channel's length, the high load supplied, and the increasing number of requests for electrical energy each year affect the quality of distribution of electrical energy. From the above problems, simulation and analysis of the installation of distributed generation are carried out. In installing Distributed Generation, three scenarios are used based on the most significant voltage drop point. The installation of Distributed Generation scenario 1 has an average voltage value of 95.16% or 19.81 kV and an average voltage drop of 9.82% or 1.965 kV, and power losses of 946.69 Kw, where losses power loss was reduced by 17.8% or 733.7 kW. The installation of Distributed Generation scenario 2 has an average voltage value of 95.84% or 19.17 kV and an average voltage drop of 4.16% or 0.833 kV, and power losses of 1062.4 Kw, where losses power loss was reduced by 15.8% or 618 kW. The installation of Distributed Generation scenario three does not experience a voltage drop, the average voltage value is 102.4% or 20.38 kV, and power losses are 1062.4 KW, where power losses are reduced by 29.7% or 1114, 6 kW.

Downloads

Download data is not yet available.

References

M. A. ADHIEM, S. H. PERMANA, B. M. FATURAHMAN, and others, Pembangkit Listrik Tenaga Surya bagi Pembangunan Berkelanjutan. Publica Indonesia Utama, 2021.

J. Hutahaean et al., Pengantar Teknologi Komputer dan Informasi. Yayasan Kita Menulis, 2022.

A. M. Mappalotteng, S. A. Karim, and N. Rahmawati, “Analisis Beban Pemakaian Daya Listrik Di Kabupaten Bantaeng Selama Masa Pandemi Covid-19,” J. Media Elektr., vol. 19, no. 2, pp. 82–86, 2022.

M. Silalahi and D. Giawa, “PERSEPSI MASYARAKAT TERHADAP KUALITAS LAYANAN LISTRIK PT. PERUSAHAAN LISTRIK NEGARA (PLN) DI DESA HILIWOSI KECAMATAN ULUSUSUA KABUPATEN NIAS SELATAN,” J. Gov. Opin., vol. 6, no. 2, pp. 187–198, 2022.

J. Tiro and L. Ruslan, “Analisis Penempatan Transformator Distribusi Berdasarkan Jatuh Tegangan Di PT PLN (Persero) ULP Malino,” J. Teknol. Elekterika, vol. 16, no. 2, pp. 69–72, 2019.

M. DICKY, “ANALISIS PENEMPATAN DAN KAPASITAS DISTRIBUTED GENERATION (DG) TERHADAP PROFIL TEGANGAN DAN RUGI DAYA PADA PENYULANG LIPAT KAIN-RIAU,” UNIVERSITAS ISLAM NEGERI SULTAN SYARIF KASIM RIAU, 2020.

A. Hasibuan, M. Isa, M. I. Yusoff, S. R. A. Rahim, and I. M. A. Nrartha, “Effect of installation of distributed generation at different points in the distribution system on voltage drops and power losses,” in AIP Conference Proceedings, 2021, vol. 2339, no. 1, p. 20134.

R. A. Ufa, Y. Y. Malkova, V. E. Rudnik, M. V Andreev, and V. A. Borisov, “A review on distributed generation impacts on electric power system,” Int. J. Hydrogen Energy, 2022.

O. Krishan and S. Suhag, “An updated review of energy storage systems: Classification and applications in distributed generation power systems incorporating renewable energy resources,” Int. J. Energy Res., vol. 43, no. 12, pp. 6171–6210, 2019.

R. Kurniawan, A. Nasution, A. Hasibuan, M. Isa, M. Gard, and S. V. Bhunte, “The Effect of Distributed Generator Injection with Different Numbers of Units on Power Quality in the Electric Power System,” J. Renew. Energy, Electr. Comput. Eng., vol. 1, no. 2, pp. 71–78, 2021.

H. Mubarak, A. Hasibuan, A. Setiawan, and M. Daud, “Optimal Power Analysis for the Installation of On-Grid Rooftop Photovoltaic Solar Systems (RPVSS) in the Industrial Engineering Laboraturiom Building, Bukit Indah Universitas Malikussaleh Lhokseumawe Aceh,” in 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), 2020, pp. 44–47.

B. H. Lubis, “Teknologi Smart Grid Untuk Penerapan Demand Side Management: Prospek Masa Depan di Indonesia,” J. Pendidik. Tambusai, vol. 5, no. 3, pp. 8092–8100, 2021.

M. P. Adhan Efendi, S. K. Rosiah, M. P. Susilawati, A. Nuraeni, W. Noviansyah, and others, Dasar-Dasar Menulis Karya Tulis Ilmiah. Deepublish, 2021.

M. A. Zakariah, V. Afriani, and K. H. M. Zakariah, METODOLOGI PENELITIAN KUALITATIF, KUANTITATIF, ACTION RESEARCH, RESEARCH AND DEVELOPMENT (R n D). Yayasan Pondok Pesantren Al Mawaddah Warrahmah Kolaka, 2020.

Downloads

Published

2022-06-30

How to Cite

Hasibuan, A., Firwan Dani, Asran, & I Made Ari Nrartha. (2022). Simulation and Analysis of Distributed Generation Installation on a 20 kV Distribution System Using ETAP 19.0. Bulletin of Computer Science and Electrical Engineering, 3(1), 18–29. https://doi.org/10.25008/bcsee.v3i1.1151