Identification of the Aquifer Layer using the Geoelectric Method in Teupin Batee Village, Aceh Besar


  • Syafrizal Idris Department of Physics Education, Universitas Malikussaleh, Indonesia
  • Dian Darisma Department of Geophysics Engineering, Universitas Syiah Kuala, Indonesia
  • Agus Hari Pramana Department of Mining, Universitas Syiah Kuala, Indonesia
  • Nurul Aflah Department of Mining, Universitas Syiah Kuala, Indonesia
  • M Sayuti Department of Industrial Engineering, Universitas Malikussaleh, Indonesia
  • Nanda Novita Department of Physics Education, Universitas Malikussaleh, Indonesia



Groundwater, Aquifer, Resistivity, Geoeletrical Method, Teupin Batee


The need for clean water around the world is related to the increasing population, especially in Teupin Batee Village, Aceh Besar District. In addition to surface water, groundwater is one of the potentials that can be utilized by the community, particularly for household needs. The purpose of this study is to identify the aquifer layer using the geoelectric method. One of the geophysical methods that can be used to map groundwater potential is the geoelectrical method based on the resistivity value of subsurface rocks. This study uses the Wenner-Schlumberger array because it can map subsurface structures both vertically and horizontally. From the results of the study, it was found that there are four different layers in this research area including, the top soil layer, hard rock, tuffaceous sand and sand layer as aquifer layer. The top soil layer is mixed with tuff, sand and volcanic breccia to a depth of 8 m with a resistivity value of 5-25 ?m. The Hard rock layer is at a depth of 8 m – 30 m with a resistivity value of 45-220 ?m. The tuffaceous sand layer has a resistivity value ranging from 25-55 ?m. While the sand layer or aquifer is at a depth of 10 m – 60 m with a resistivity value of <10 ?m which is separated by a layer of tuffaceous sand between the two aquifer layers.


Download data is not yet available.


R. A. Freeze and J. A. Cherry, Groundwater. 1979.

W. M. Telford, L. P. Geldart, and R. E. Sheriff, Applied Geophysics Second Edition. 1990.

R. Ismail, A. Hasibuan, M. Isa, F. Abdurrahman, and N. Islami, ‘Mitigation of High Voltage Induction Effect On ICCP System of Gas Pipelines: A field Case Study’, Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 6, pp. 3226–3231, 2019, doi: 10.12928/TELKOMNIKA.v17i6.12493.

M. I. I. Mohamaden, ‘Delineating Groundwater Aquifer and Subsurface Structures by using Geoelectrical Data: Case Study (Dakhla Oasis, Egypt)’, NRIAG J. Astron. Geophys., vol. 5, no. 1, pp. 247–253, 2016, doi: 10.1016/j.nrjag.2016.05.001.

M. Hasan, Y. Shang, W. Jin, and G. Akhter, ‘Estimation of Hydraulic Parameters in a Hard Rock Aquifer using Integrated Surface Geoelectrical Method and Pumping Test Data in Southeast Guangdong, China’, Geosci. J., vol. 25, no. 2, pp. 223–242, 2021, doi: 10.1007/s12303-020-0018-7.

G. Akhter and M. Hasan, ‘Determination of Aquifer Parameters using Geoelectrical Sounding and Pumping Test Data in Khanewal District, Pakistan’, Open Geosci., vol. 8, no. 1, pp. 630–638, 2016, doi: 10.1515/geo-2016-0071.

D. Darisma, F. Fernanda, and M. Syukri, ‘Investigation of Groundwater Potential using Electrical Resistivity Method and Hydraulic Parameters in Lam Apeng, Aceh Besar, Indonesia.’, J. Geosci. Eng. Environ. Technol., vol. 5, no. 4, pp. 211–218, 2020, doi: 10.25299/jgeet.2020.5.4.5501.

S. K. Sandberg, L. D. Slater, and R. Versteeg, ‘An Integrated Geophysical Investigation of the Hydrogeology of an Anisotropic Unconfined Aquifer’, J. Hydrol., vol. 267, no. 3–4, pp. 227–243, 2002, doi: 10.1016/S0022-1694(02)00153-1.

E. B. Voytek, C. R. Rushlow, S. E. Godsey, and K. Singha, ‘Identifying Hydrologic Flowpaths on Arctic Hillslopes using Electrical Resistivity and Self Potential’, Geophysics, vol. 81, no. 1, pp. WA225–WA232, 2016, doi: 10.1190/GEO2015-0172.1.

I. Rusydy et al., ‘Integration of Borehole and Vertical Electrical Sounding Data to Characterise The Sedimentation Process and Groundwater in Krueng Aceh Basin, Indonesia’, Groundw. Sustain. Dev., vol. 10, no. 7, p. 100372, 2020, doi: 10.1016/j.gsd.2020.100372.

M. Yanis et al., ‘Geophysical and Geotechnical Approaches in Developing Subsurface Model for Gas Power Plant Foundation’, Indian Geotech. J., vol. 52, no. 1, pp. 237–247, 2022, doi: 10.1007/s40098-021-00559-y.

J. D. Bennet et al., ‘Geologic Map of the Banda Aceh Quadrangle, Sumatra.’ 1981.

W. Lowrie, Fundamental of Geophysics Second Edition. 2007.

K. Knödel, G. Lange, and H.-J. Voigt, Enviromental Geology Handbook of Field Methods and Case Studies. Springer-Verlag Berlin Heidelberg, 2007.

D. Darisma and Marwan, ‘One-Dimensional Magnetotelluric Inversion using Levenberg-Marquardt and Particle Swarm Optimization Algorithm’, IOP Conf. Ser. Earth Environ. Sci., vol. 364, no. 1, 2019, doi: 10.1088/1755-1315/364/1/012035.

M. H. Loke and R. D. Barker, ‘Rapid Least-Squares Inversion of Apparent Resistivity Pseudo-sections by a Quasi-Newton Method’, Geophys. Prospect., vol. 44, no. 1, pp. 131–152, 1996, doi: 10.1111/j.1365-2478.1996.tb00142.x.

S. Idris et al., ‘Analysis of Shallow Subsurface Structure at Geothermal Area of Ie Jue Using Resistivity Method’, vol. 18, no. February, pp. 18–21, 2018, doi: 10.24815/jn.v18i1.9676.




How to Cite

Idris, S., Darisma, D., Pramana, A. H., Aflah, N., Sayuti, M., & Novita, N. (2022). Identification of the Aquifer Layer using the Geoelectric Method in Teupin Batee Village, Aceh Besar. Bulletin of Computer Science and Electrical Engineering, 3(1), 40–46.