Geoelectric Methods to Determine the Location of Old Graves
DOI:
https://doi.org/10.25008/bcsee.v3i1.1147Keywords:
Geoelectric, Old graves, Soil Invetigation, Geophysical, Ancient Burial SitesAbstract
Gunung Selendang site is known for being classified as a burial site containing human bones, based on excavation findings in the form of a jug tomb (tajau), including; Limbs, hip fragments, jaw fragments, teeth, skull fragments, and small bone fragments that are difficult to identify. In general, the Tajau shape at this point consists of two groups, namely the slender Tajau group with wavy lips with a diameter of 23.5 cm and the chubby Tajau group with simple, unadorned lips with a diameter of 22 cm. Geophysical methods widely used in exploration include seismic, magnetic, gravitational, electrical, and electromagnetic resistance methods. The geoelectric method is one of the geophysical exploration methods that can be used to study the properties of a geothermal system, determine the lithology of rock layers, deposit locations, flow patterns, and the distribution of geothermal fluids below the earth's surface.From this material it can be clearly seen in the color of the soil layer and shows a collection of urn-shaped material in this color at a depth of up to 2 meters and according to the knowledge that from the side of the soil to a depth of 2 meters a collection of Urns with ancient fragments found.
Downloads
References
D. Todd, Groundwater Hydrology. New York: John Wiley & Sons, 1959.
S. a. R. S. A. Broto, Pengolahan Data Geolistrik dengan Metode Schlumberger. Jawa Tengah: Teknik Undip, 2008.
R. Febriani, J. M, and N. Islami, “Interpretation Geothermal Energy Using Geoelectric Method with Dipole-Dipole in Pawan Village, Rokan Hulu Regency,” J. Aceh Phys. Soc., vol. 9, no. 2, pp. 31–36, 2020, doi: 10.24815/jacps.v9i2.15304.
N. Tihurua, T. F. Niyartama, Y. E. Setyaningrum, and Q. Uyun, “Identification of Landslide-Prone Subsoil Using Wenner Configuration Geoelectric Method in Gayamharjo Village, Prambanan District, Sleman Regency,” Proceeding Int. Conf. Sci. Eng., vol. 2, pp. 125–129, 2019, doi: 10.14421/icse.v2.69.
K. Karanth, Ground water assessment: development and management. New Delhi: Tata Mc Graw-Hill Publishing., 1987.
T. Song, Y. Liu, and Y. Wang, “Finite Element Method for Modeling 3D Resistivity Sounding on Anisotropic Geoelectric Media,” Math. Probl. Eng., vol. 2017, pp. 1–12, 2017, doi: 10.1155/2017/8027616.
A. K. Rybin, V. E. Matyukov, V. Y. Batalev, and E. A. Bataleva, “Deep Geoelectric Structure of the Earth’s Crust and the Upper Mantle of the Pamir–Alai Zone,” Russ. Geol. Geophys., vol. 60, no. 1, pp. 108–118, 2019, doi: 10.15372/rgg2019008.
J. J. Love, G. M. Lucas, E. J. Rigler, B. S. Murphy, A. Kelbert, and P. A. Bedrosian, “Mapping a Magnetic Superstorm: March 1989 Geoelectric Hazards and Impacts on United States Power Systems,” Sp. Weather, vol. 20, no. 5, 2022, doi: 10.1029/2021sw003030.
K. Karimah, A. Susilo, E. A. Suryo, A. Rofiq, and M. F. R. Hasan, “Analysis of Potential Landslide Areas Using Geoelectric Methods of Resistivity in The Kastoba Lake, Bawean Island, Indonesia,” J. Penelit. Pendidik. IPA, vol. 8, no. 2, pp. 660–665, 2022, doi: 10.29303/jppipa.v8i2.1414.
D. H. Boteler, R. J. Pirjola, and L. Marti, “Analytic Calculation of Geoelectric Fields Due to Geomagnetic Disturbances: A Test Case,” IEEE Access, vol. 7, pp. 147029–147037, 2019, doi: 10.1109/access.2019.2945530.
B. Santoso, “IDENTIFICATION OF AQUIFER USING RESISTIVITY GEOELECTRIC METHOD IN REGIONAL OF BEBANDEM, KARANG ASEM, BALI,” EKSAKTA Berk. Ilm. Bid. MIPA, vol. 19, no. 1, pp. 24–34, 2018, doi: 10.24036/eksakta/vol19-iss1/101.
K. D. Tjiongnotoputera, A. Wafi, N. S. Setiawan, and M. Mariyanto, “Analytical comparison of electrode configuration on 2D geoelectric method for identification of water seepage in the lake body,” J. Phys. Conf. Ser., vol. 1825, no. 1, p. 12019, 2021, doi: 10.1088/1742-6596/1825/1/012019.
V. B. Olaseni and J. O. Airen, “A 3-D geoelectric model over mineralized zone of Ugonoba, Edo State, Nigeria,” Sci. Africana, vol. 20, no. 1, pp. 141–150, 2021, doi: 10.4314/sa.v20i1.12.
A. Daniswara, D. Dahrin, and S. Setianingsih, “Analysis And Modelling Of Geoelectric Data Modeling For The Identication Of Groundwater aquifer At Cisarua Area, West Bandung,” J. Geofis., vol. 17, no. 2, p. 22, 2020, doi: 10.36435/jgf.v17i2.416.
R. Juliani, Rahmatsyah, T. Tampubolon, J. Hutahean, and I. Azhari, “Subsurface analysis of chinese city sites in north sumatra medan marelan subdistrict using geoelectric methods,” J. Phys. Conf. Ser., vol. 1317, no. 1, p. 12057, 2019, doi: 10.1088/1742-6596/1317/1/012057.
J. Muhammad and N. Islami, Integrated Geoelectric and Hydrogeochemical Survey to Analyze the Potential of Underground Water in Solok, West Sumatra, Indonesia. MDPI AG, 2019.
O. M. Alile, “Evaluation of Soil Profile on Aquifer Layer of Three Location in Edo State,” Int. J. Phys. Sci., vol. 2, 2007.
W. L. G. R. S. a. D. K. Telford, Applied Geophysic. London: Cambridge University Press, 1990.
M. Brophy, “‘Au meilleur de soi’: Yves Bonnefoy and the Making of Baudelaire,” Irish J. French Stud., 2021, [Online]. Available: https://www.ingentaconnect.com/content/irjofs/ijfs/2021/00000021/00000001/art00003.
A. W. Efendi, “Laporan Hasil Investigasi Rona Lapisan Tanah pada Situs Gunung Selendang Sanga-Sanga.,” Samarinda, 2016.
P. P. De Lugão, B. F. Kriegshäuser, and P. E. Freire, “Geoelectric Modelling of Near-Surface Resistivity Distribution for the Design of Windfarm Grounding Grids,” 1st Conf. Geophys. Infrastruct. Plan. Monit. BIM, 2019, doi: 10.3997/2214-4609.201902555.
V. B. Kaplun and A. K. Bronnikov, “A Geoelectric Section of the Lithosphere of the Khanka Massif along the Pozharskoye Village–Shkotovo Settlement Profile from MT Soundings,” Russ. J. Pacific Geol., vol. 15, no. 6, pp. 510–522, 2021, doi: 10.1134/s181971402106004x.
V. Dobrica, D. Stanica, C. Demetrescu, and C. Stefan, The geoelectric structure of the Romanian underground and its contribution to the geoelectric hazard during the solar cycle 23. Copernicus GmbH, 2020.
E. Wang, M. Unsworth, and T. Chacko, “Geoelectric structure of the Great Slave Lake shear zone in northwest Alberta: implications for structure and tectonic history,” Can. J. Earth Sci., vol. 55, no. 3, pp. 295–307, 2018, doi: 10.1139/cjes-2017-0067.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Aco Wahyudi Efendi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.