
Bulletin of Computer Science and Electrical Engineering

Vol. 1, No. 1, June 2021, pp. 1~8

ISSN: 2722-7324, DOI: 10.25008/bcsee.v1i2.1134  1

Journal homepage: http://bcsee.org/

Unfolding Sarcasm in Twitter Using C-RNN Approach

Shawni Dutta1, Akash Mehta2
1,2Department of Computer Science, The Bhawanipur Education Society College, Kolkata, India

Article Info ABSTRACT

Article history:

Received Nov 29, 2020

Revised Dec 30, 2020

Accepted Mar 27, 2021

 Sarcasm detection in text is an inspiring field to explore due to its

contradictory behavior. Textual data can be analyzed in order to discover

clues those lead to sarcasm. A Deep learning-based framework is applied in

this paper in order to extract sarcastic clues automatically from text data. In

this context, twitter news dataset is exploited to recognize sarcasm.

Convolutional-Recurrent Neural network (C-RNN) based model is proposed

in this paper that enables automatic discovery of sarcastic pattern detection.

The proposed model consists of two major layers such as convolutional

layer, and Long-term short memory (LSTM) layers. LSTM is known to be a

variant of traditional RNN. Experimental results confirmed sarcastic news

detection with promising accuracy of 84.73%. This research work exhibits its

uniqueness in combining two dissimilar Deep Learning frameworks under a

single entity for predicting sarcastic posts.

Keywords:

Sarcasm Detection

Deep Learning

CNN

RNN

CNN-LSTM

Twitter
This is an open access article under the CC BY-SA license.

Corresponding Author:

Shawni Dutta,

Department of Computer Science,

The Bhawanipur Education Society College,

5, Elgin Rd, Sreepally, Bhowanipore, Kolkata, West Bengal 700020.

Email: shawni.dutta@thebges.edu.in

1. INTRODUCTION

The Sarcasm is a sardonic comment coated by humor. Sarcasm has generally been used to

create inconsistencies and uncertainties in the minds of the listeners while being derisive of them or

someone else. Sarcasm employs the use of contradiction in order to keep the audience guessing

about the true intentions of the host. Sarcasm is generally accompanied by a change in tone, body

language and facial expressions while speaking. This makes it easier for sarcasm to be detected in

an uttered mode of communication. When it comes to text however, these indicators are absent.

Sarcasm detection in texts is done on the basis of contextual information, lexical structures, and use

of grammar. This makes Sarcasm detection in texts an interesting task, thereby explaining the

immense research interest in them.

Sarcasm is a way of expressing positive feelings using some negative words and phrases, or

vice-versa [1]. For example, “You are really smart boy Sheldon #Sarcasm” utters the negative

feelings using positive words. Sarcasm is often used as a tool to make jokes, be humorous, or to

criticize and make remarks about any product, individual or any proceedings. Different authors

have given different definitions of sarcasm. According to [2], the situational differences between

the text and the context are often regarded as Sarcasm. Depending on the usage, On the other hand,

[3] describes Sarcasm as a pointed and satirical or ironic exclamation designed to cut or give pain.

In [3], it is also described that sarcasm can be defined as a mode of satirical wit depending for its

https://creativecommons.org/licenses/by-sa/4.0/
mailto:shawni.dutta@thebges.edu.in

  ISSN: 2722-7324

 Bulletin of Computer Science and Electrical Engineering, Vol. 2, No. 1, June 2021 : 1 – 8

2

effect on acrimonious, corrosive, and often tongue-in-cheek language that is usually directed

against an individual.

The objective of this paper is to recognize sarcastic patterns from news headlines. These news

headlines belong to twitter social media platform. This paper focuses on discovering sarcastic

patterns from these data. For this purpose, Deep Learning (DL) [4] techniques are utilized while

analyzing and inferring sarcasm from tweets. DL techniques are beneficial since it simulates an

automated feature extraction method which reduces the burden of manual processing step. DL

technique exemplifies the use of neural network model which identifies underlying hidden patterns

in the data. Deep neural networks are an improvised version of traditional neural networks in the

sense that DNN allows stacking of multiple hidden layers between the input and output layers.

Presence of multiple hidden layers will allow learning of features in numerous ways. Recurrent

Neural Network (RNN) [5] and Convolutional Neural Network (CNN) [6] follow deep neural

network model which is employed in this paper. Long-short term memory (LSTM) [7] is a kind of

RNN approach which is exploited in this paper. In addition to it, a major component of the CNN,

which is the Convolutional layer, is also used as a part of our proposed methodology. The proposed

C-RNN method consists of convolutional layer and LSTM layers. Convolutional layer and Bi-

directional LSTM layers [7] are put into a single entity. This implemented method is applied on

larger corpus of twitter dataset in order to obtain sarcastic patterns from the dataset.

This section illustrates numerous studies those are dedicated for sarcastic posts detection. The

illustration instantiates the necessity of carrying out our current research work. All the mentioned

studies are elaborated in terms their employed strategies and efficiencies. Lukin & Walker [8]

presented a pattern-based approach that automatically identifies sarcastic and nastiness patterns on

unannotated online dialogues. A high precision sarcastic post classifier, followed by a high

precision non-sarcastic post classifier is trained using bootstrapping [8] method. Experimental

results indicated an accuracy of 68.7% in terms of sarcasm detection. Instead of focusing on feature

engineering for extraction of the user-traits, Silvio Amir et al. [9] implemented a CNN [6] for

obtaining the contextual features. The past tweets of the user are simply fed to CNN [6], which

learns the user characteristics, which is then augmented along with the lexical and syntactical

information. González-Ibáñez et al. [10] realized the importance of pragmatic features for ensuring

the consistency between positive and negative tweets. They employed SVM [11] with sequential

minimal optimization (SMO) and logistic regression (LogR) [12] for differentiating between them.

Unlike the approach suggested by González-Ibáñez [10], Barbieri [13] favored the use of features

such as punctuations and use of out of context words over patterns of words. The proposed model

used seven sets of features such as frequency, synonyms, written-spoken style uses, structural

features like length, punctuation, emoticons; concentration of adverbs and adjectives, sentiment gap

between confirmatory and toxic terms; and indistinctness. They used a supervised learning

algorithm, named the Decision Tree classifier [14] in order to detect sarcasm.

Wang et. al. in [15] tried to make use of the contextual information about the author of the

tweet to perceive sarcasm more proficiently. Sifting the tweets through a torrent of posts allowed

them to consider a wider context. Three types of contextual information were considered – Topic

based Context, History, and Conversation. Two feature engineering methods were used – Word

Clusters and Bag of Words [16] – to model the features. These features were then fed into the

SVMhnn [15] algorithm for sequential classification. Experimental Results confirmed that

sequential classification efficiently detected the contextual information. They were able to

demonstrate a significant increase in the performance of the sarcasm detection algorithm. Joshi et

al. [17] measured the indirect contextual information those were out of place with its surroundings.

These contextual peculiarities have proven to be significant for the detection of sarcasm in texts.

This technique [17] detects sarcasm by considering the similarity between word-embedding. The

uniqueness of this method lies in the fact that it also takes into account the findings of its

predecessors; and augments the features based on the similarity of the word-embedding. The word

embedding similarity is calculated using 2 methods – weighted similarity features (WS) and

 ISSN: 2722-7324 

Unfolding Sarcasm in Twitter Using C-RNN Approach (Shawni Dutta)

3

unweighted similarity features (UWS). They [17] considered four types of word embeddings –

GloVe, LSA, Word2Vec, and Dependency Weights. Ghosh and Veale [18] integrated LSTM [7],

CNN [6] and a Deep Neural Network [4] in order to identify sarcasm in text. A recursive SVM [11]

was created [18] that was provided with labeled syntactic and semantic information, for training.

The results generated by the two models [18] were then compared. In the neural network, the text is

taken as input and converted into a vector. This vector is then fed into a CNN [6], whose job is to

reduce the frequency variation and identify the various discriminating words. These discriminating

words are then provided as input into the LSTM [7], which is an RNN [5] capable of extracting

temporal contextual information. The output of the LSTM [7] is then fed into a Deep layer, which

generates a high order feature set as output. This high order feature set is then sent into a

SOFTMAX [19] layer for the final classification. The Neural Network Model [4] was found to

outperform the SVM Model [11].

 The presented research targets in achieving sarcastic clues detection from news corpus by

discarding the need of manual feature engineering task. Our research focuses on automatic sarcastic

clue detection using deep learning methodologies because of its self-adaptive nature. The proposed

dissimilar neural network model can handle and analyse the news content by itself as well as

provide insight to sarcastic pattens present in the news contents.

2. BACKGROUND

Deep Learning (DL) [4] is a widely used machine learning technique which has found its use

in applications such as object detection, pattern recognition, and natural language processing. DL

belongs to the class of Representation Learning techniques. A DL [4] system has the ability to

automatically discover patterns hidden in the raw data. These discovered patterns are then used to

perform classification and feature detection. DL [4] is a class of machine learning algorithms which

have been inspired by the structure and working of the human brain. A DL [4] system stacks

multiple layers of learning-nodes in order to understand the features present in the raw input data.

Each layer transforms the output obtained from the previous layer into a representation at a higher

and more abstract level. The depth not only allows the system to learn complex features but also

enables it to draw inferences which would not have been possible in a shallow system.

Recurrent Neural Networks (RNNs) [5] are a class of Deep Learning methods which was first

conceptualized by David Rumelhart in 1986. RNNs [5] are widely used for their ability to properly

deal with sequential data. This makes them a perfect tool to deal with Natural Language

Processing, Speech Recognition, A/V analysis and Image Captioning. A traditional neural network

assumes the data points to be independent of each other, whereas an RNN [5] works really well on

sequential data since it captures the time dependencies between the data. What sets RNNs [5] apart

from its peers is the ability to share parameters. This characteristic is crucial for it to deal with

textual data, since a particular text can be written in multiple ways. Parameter sharing also allows

RNNs [5] to deal with variable length sequences, something a traditional multi-layered neural

network cannot do. RNNs [5] are an extension of a conventional neural network [4] in the sense

that it introduces cycles connecting adjacent nodes in the traditional structure. These cycles work as

the internal memory of the entire network. This enables RNNs [5] to deal with past data points.

Traditional Neural Networks [4] have a one-to-one mapping between the input and the output,

whereas an RNN [5] has a one-to-many, many-to-one, or many-to-many mapping between the

input and the output. The recurrent relationship can be denoted by the formula given as equation

(1):

𝑆(𝑡) = 𝑓(𝑆(𝑡 − 1)) (1)

where S (t) is the state of the system at time t, and S (t-1) is the state of the system at time t-1.

Traditional RNNs, also known as Vanilla RNNs, suffer from the problem of exploding or vanishing

gradients. This causes the accumulation of errors over multiple time steps. Vanilla RNNs do not

  ISSN: 2722-7324

 Bulletin of Computer Science and Electrical Engineering, Vol. 2, No. 1, June 2021 : 1 – 8

4

work particularly well when there is a large gap between the referenced data – a common

occurrence in texts.

In order to deal with aforementioned problems, variations of RNN were created, one of

them being LSTM [7]. LSTM [7] is the most common RNN [5] model that has the ability to

remember values over random intervals. It works really well on Time Series Data, and is not

affected by the long-term dependency problem which plagued the traditional RNN models. The

biggest difference between LSTM [7] and traditional RNN [5] lies in the fact that LSTM [7] has

the ability to obtain context from the previous states, in addition to the present states. The vital

components of the LSTM [7] are the gates and the memory cells. The working of the LSTM [7] is

critically affected by the forget gate, input gate and output gate. The input and forget gates affect

the working of the memory cells. If these gates are closed, the memory cell contents remain un-

modified between two consecutive time steps. The Gates are responsible for the LSTM’s [7] ability

to remember information across multiple time-steps, and the flow of the gradient across them. This

allows the LSTM [7] to have the ability to be unaffected by the problem ailing the traditional RNN

[5] model.

Convolutional Neural Networks (CNNs) [6] are inspired by the working of the human brain –

mainly the visual cortex. CNNs [6] are shown to require less parameters compared to its

counterparts. The Convolution Layer in the CNN [6] performs Convolutions instead of matrix

multiplication. What sets CNN apart are its attributes of parameter sharing and sparse interactions.

Parameter sharing is achieved by tying the weights for two different units. Sparse interaction is

achieved by having the “kernel” size smaller than the input image. A CNN performs three steps –

perform multiple convolutions to generate linear activation, applying nonlinear function on the

linear activation, and finally a pooling function that modifies the output of a particular location in

the net based on its neighboring values. Examples of pooling functions include – MAXPOOLING,

MINPOOLING and AVERAGE-POOLING.

3. RESEARCH METHOD

The target of this paper is to detect whether a given post is sarcastic or not. For this purpose,

News tweets among which 11724 posts are sarcastic and the rest 14985 are non-sarcastic. Once the

data collection is done, we apply a tokenization method as pre-processing techniques on the news

Headlines dataset for Sarcasm Detection is collected from Kaggle [20]. The dataset consists of

26709 headlines. The words present in the corpus are transformed into lower case for applying pre-

processing. The Keras tokenizer API [23] is built on vocabulary size of 10,000 which means a

maximum of 10,000 words will be kept based on word frequency. The purpose of this class is to

allow the vectorization a text body, by turning each text either into a vector where the coefficient of

each token could be binary, based on word count/tf-idf, or into a sequence of integers where each

integer is the index of a token in a dictionary.

Next, this tokenizer is fitted into the corpus of tweets and a feature vector is obtained. Later

that feature vector is fitted into the proposed classifier model. However, the produced tokenized

vector is partitioned into training and testing dataset. Table 1 defines training, testing dataset size,

number of sarcastic and non-sarcastic posts. The classifier learns from the training dataset which is

given as input in terms of extracted feature vectors. Later, sarcastic pattern prediction results are

retrieved using a testing dataset.

Table 1. Distribution of Dataset

Number of

Sarcastic

tweets

Number of Non-

Sarcastic

tweets

Number of tweets in

Training dataset

Number of tweets in

Testing dataset

11724 14985 25,000 1709

 ISSN: 2722-7324 

Unfolding Sarcasm in Twitter Using C-RNN Approach (Shawni Dutta)

5

After obtaining the pre-processed dataset, it needs to be analyzed for sarcastic pattern

identification. To accomplish the objective, the classifier model needs to be employed. Classifier

model associates input dataset into target class after discovering hidden relationships among large

corpus. This paper utilizes a deep learning framework for implementing a classifier model. RNN

and convolutional layer of CNN are the main components of the classifier model. The model

consists of one Embedding layer, 1 dimensional convolutional layer, two bi-directional LSTM

layers and finally two fully-connected layers respectively.

• Embedding Layer: The size of embedding layer is the same as the size of vocabulary size,

i.e, 10,000. This layer receives input shape of 40 and dimension of this layer is 2.

• Convolutional Layer: This layer is stacked next to the embedding layer. This layer used

1-dimensional convolutional layer which is constructed using a filter size of 32 and kernel

size of 3. This layer uses relu [21] as an activation function.

• Bidirectional LSTM layer: Following a 1-dimensional convolutional layer, two bi-

directional layers are stacked into the model. The layers consist of having learning nodes

64 and 32 respectively. Both these layers are activated using relu [21] function.

• Flatten Layer: The output of the last bi-directional LSTM layer produces 3-dimensional

output. This layer accepts 3 dimensional inputs and produces 2-dimensional output. This

output will be given as input for next fully-connected layers.

• Fully-connected Layer: Two fully-connected layers are added into the model of learning

nodes 64 and 1 respectively and these layers are activated using the ‘relu’ [21] and

‘sigmoid’ [22] activation functions respectively. The last layer is the output layer of the

entire model. For designing the fully-connected layers, we employ keras [23] dense layers.

All these layers are compiled using ‘adam’ optimizer [24] and binary cross entropy is used as

another training criterion. The model is trained using 5 epochs with batch size of 32. Once the

training is being completed, a testing dataset is used for obtaining the final prediction results. The

following table 2 shows the description of the model.

Table 2. Model Description

Layer No. Layer Name Layer Type Output Shape # Parameters

1 embedding (Embedding) (None,40,2) 20000
2 conv1d (Conv1D) (None, 38, 32) 224

3 bidirectional (Bidirectional

LSTM)

(None, 38, 128) 49664

4 bidirectional_1 (Bidirectional

LSTM)

(None, 38, 64) 41216

5 Flatten (Flatten) (None, 64) 0
6

7

 dense

 dense_1

(Dense)

(Dense)

(None, 64)

(None, 1)

 4160

 65

4. RESULTS AND DISCUSSION

This section provides the training procedure results. The accuracy and loss obtained during

each epoch is shown in Figure 2. As shown in Figure 2, as the number of epochs is increasing, the

accuracy increases and the loss decreases. Finally, an accuracy of 0.9571 and loss of 0.1189 is

reached by our proposed model during the last epoch of the training process. Table 3 shows the

exact proportion of loss and accuracy for each epoch. Once the training procedure is completed, the

test dataset is fitted to the model. In other words, the testing accuracy and error rate is measured at

the end of 5th epoch. Table 4 shows the testing accuracy and loss acquired by the model. As

discussed, the training results exhibited by the C-RNN model shows good performance as it

reaches accuracy almost close to 1.0. This training outcome is justified by the testing results which

show a good generalization output.

  ISSN: 2722-7324

 Bulletin of Computer Science and Electrical Engineering, Vol. 2, No. 1, June 2021 : 1 – 8

6

(a)

 (b)

Figure 2. (a) Loss and (b) Accuracy obtained for each epoch during training.

Table 3. Exact Ratio of Training Time Loss and Accuracy
Epoch

Number

#Samples Time Taken Loss Training

Set

Accuracy

1

2

3

4

5

25000

25000

25000
25000

25000

53s

51s

52s
54s

54s

0.6684

0.2643

0.1867
0.141

0.1189

0.7604

0.8917

0.927
0.9427

0.9571

Table 4. Error Rate and Testing Accuracy of proposed method

Proposed

Method

Loss Accuracy

C-RNN 0.5158 84.73%

As compared to the existing research studies, our presented method indicates superior

efficiency while making an automated sarcasm detection model. An existing research work carried

out in [10] has reached the highest efficiency of 75.89%. An accuracy of 68.7% is achieved by [8]

for accomplishing the sarcasm detection task. Highest efficiency of 69.13% in terms of Macro-F is

exhibited by [15]. While considering the current work, this study has achieved an accuracy of

84.37% for sarcastic news identification. The uniqueness of this work lies in obtaining a fusion

model that accommodates two dissimilar deep neural network layers. This work differs from its

peer research works in terms of automated classification without incorporating the manual feature

engineering task. The news contents are analysed extensively by the presented hybrid model that

can detect the sarcastic clues by itself without any manual intervention. However, the pre-

processing tasks are preceded by the presented classification technique for achieving the better

result. The superiority of the classification technique also depends on choosing the right hyper-

parameters during the implementation. Considering all these necessary operations, the proposed C-

RNN approach can be exemplified as a computer aided system for decision making process for

sarcasm detection field.

5. CONCLUSION

Automated Sarcasm detection is an interesting field because it self-comprehends the

differences between sarcastic and lying patterns which would not be feasible by manual recognition

process. Detecting sarcasm in social media enables capturing insight into the trend of current public

opinion. This paper approaches an automated process that will discover unseen sarcastic sentiment

on news twitter posts. Use of neural network is approached in this study in order to simulate human

 ISSN: 2722-7324 

Unfolding Sarcasm in Twitter Using C-RNN Approach (Shawni Dutta)

7

brain-like operations. So, DL based implementation is favoured for this sarcasm detection domain

which is indeed a complex event to be identified. This paper carries out a combined method that

assembles convolutional layer as well as Bi-LSTM layer into an entity for recognizing hidden

sarcastic patterns in tweet. This combined model is adjusted using necessary parameter tuning.

Fine-tuning these parameters will assist in obtaining the best performance. The proposed model is

capable of identifying sarcastic tweets with an accuracy of 84.73%. In conclusion, a computerized

sarcasm detection system is implemented in this paper that is proficient to infer sarcasm from large

databases with promising accuracy and optimized error rate.

REFERENCES
[1] M. Bouazizi and T. Otsuki, “A Pattern-Based Approach for Sarcasm Detection on Twitter,” IEEE

Access, vol. 4, pp. 5477–5488, 2016, doi: 10.1109/ACCESS.2016.2594194.

[2] R. Giora, O. Fein, J. Ganzi, N. A. Levi, and H. Sabah, “On negation as mitigation: The case of

negative irony,” Discourse Process., vol. 39, no. 1, pp. 81–100, 2005, doi:

10.1207/s15326950dp3901_3.

[3] S. L. Ivanko and P. M. Pexman, “Context Incongruity and Irony Processing Context Incongruity and

Irony Processing,” no. 918551878, 2010, doi: 10.1207/S15326950DP3503.

[4] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks, vol. 61, pp.

85–117, 2015, doi: 10.1016/j.neunet.2014.09.003.

[5] M. Tom, “Recurrent neural network-based language model ´ s Mikolov Introduction Comparison

and model combination Future work,” pp. 1–24, 2010.

[6] H. C. Shin et al., “Deep Convolutional Neural Networks for Computer-Aided Detection: CNN

Architectures, Dataset Characteristics and Transfer Learning,” IEEE Trans. Med. Imaging, vol. 35,

no. 5, pp. 1285–1298, 2016, doi: 10.1109/TMI.2016.2528162.

[7] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF Models for Sequence Tagging,” 2015.

[8] S. Lukin and M. Walker, “Really? Well. Apparently Bootstrapping Improves the Performance of

Sarcasm and Nastiness Classifiers for Online Dialogue,” vol. 1, 2017.

[9] S. Amir, B. C. Wallace, H. Lyu, P. Carvalho, and M. J. Silva, “Modelling context with user

embeddings for sarcasm detection in social media,” CoNLL 2016 - 20th SIGNLL Conf. Comput. Nat.

Lang. Learn. Proc., pp. 167–177, 2016, doi: 10.18653/v1/k16-1017.

[10] R. González-ibáñez and N. Wacholder, “Identifying Sarcasm in Twitter : A Closer Look,” no. 2010,

pp. 581–586, 2011.

[11] C. Chang and C. Lin, “LIBSVM : A Library for Support Vector Machines,” vol. 2, no. 3, 2011, doi:

10.1145/1961189.1961199.

[12] R. E. Wright, “Logistic regression.,” in Reading and understanding multivariate statistics.,

Washington, DC, US: American Psychological Association, 1995, pp. 217–244.

[13] F. Barbieri, H. Saggion, and F. Ronzano, “Modelling Sarcasm in Twitter , a Novel Approach,” pp.

50–58, 2014.

[14] Quinlan J.R, “Simplifying Decision Trees,” International Journal of Man-Machine Studies, vol. 27,

no. 3. pp. 221–234, 1987.

[15] Wang, Z and Y. R. Zelin Wang, Zhijian Wu, Ruimin Wang, “Twitter Sarcasm Detection Exploiting

a Context-Based Model,” Lect. Notes Comput. Sci., pp. 77–91, 2015.

[16] H. M. Wallach, “Topic Modeling : Beyond Bag-of-Words,” no. 1, pp. 977–984, 2006.

  ISSN: 2722-7324

 Bulletin of Computer Science and Electrical Engineering, Vol. 2, No. 1, June 2021 : 1 – 8

8

[17] A. Joshi, V. Sharma, and P. Bhattacharyya, “Harnessing context incongruity for sarcasm detection,”

ACL-IJCNLP 2015 - 53rd Annu. Meet. Assoc. Comput. Linguist. 7th Int. Jt. Conf. Nat. Lang.

Process. Asian Fed. Nat. Lang. Process. Proc. Conf., vol. 2, no. 2003, pp. 757–762, 2015, doi:

10.3115/v1/p15-2124.

[18] A. Ghosh and D. T. Veale, “Fracking Sarcasm using Neural Network,” pp. 161–169, 2016, doi:

10.18653/v1/w16-0425.

[19] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-Margin Softmax Loss for Convolutional Neural

Networks,” 2016.

[20] Rishabh Misra (October,2018), "News Headlines Dataset For Sarcasm Detection" Version 2.

Retrieved on 24.05.2020 available from https://www.kaggle.com/rmisra/news-headlines-dataset-for-

sarcasm-detection.

[21] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks with RELU activation,”

Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 598–608, 2017.

[22] M. R. Zadeh, S. Amin, D. Khalili, and V. P. Singh, “Daily Outflow Prediction by Multi Layer

Perceptron with Logistic Sigmoid and Tangent Sigmoid Activation Functions,” Water Resour.

Manag., vol. 24, no. 11, pp. 2673–2688, 2010, doi: 10.1007/s11269-009-9573-4.

[23] “Keras.” [Online]. Available: https://keras.io.

[24] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int. Conf. Learn.

Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015.

